The cranial abdomen: Liver and Spleen

Tony Pease, DVM, MS
Assistant Professor of Radiology
North Carolina State University

Reading

• Chapter 41 in Thrall

Imaging the cranial abdomen

• Thickest part of the body
• Difficult to get enough contrast
• Place thickest part of the patient towards the cathode
 – Heel effect
Cranial abdomen

- Multiple structures
 - Liver
 - Spleen
 - Stomach
 - Pancreas
 - Small intestine
 - Transverse colon

Other modalities

MRI

CT

Ultrasound
Liver

- Just caudal to the diaphragm
- Cranial to the stomach
 - Liver size influences gastric axis

Gastric axis

Liver or Spleen?

LIVER!

If it extends cranial to the antrum of the stomach
Hepatomegaly

- Rounding of the liver margin
- Extends well beyond the costal arch
- Caudodorsal shift of the gastric axis

Causes for hepatomegaly

- Hepatic venous congestion
- Neoplasia (lymphoma)
- Hyperadrenocorticism
 - Steroid hepatopathy
- Diabetes mellitus
- Hepatic lipidosis
- Acute hepatitis
Radiographs

- Since radiographs just give shape
 - Hard to narrow differentials
- Need other modalities
 - Ultrasound
 - CT or MRI becoming more available

Focal hepatomegaly

- Neoplasia
- Abscess
- Cyst
- Biloma
- Liver lobe torsion (rare)

Focal Liver mass
Biliary carcinoma

Small liver
- Hard to define
- Upright gastric axis
- Difficult to evaluate with ultrasound
 - Lungs get in the way
Differential diagnoses

- Chronic liver disease
 - Cirrhosis
 - Hepatitis
- Portosystemic shunt
- Diaphragmatic hernia

Portosystemic shunt

- Abnormal communication
 - Portal vein or tributary
 - Caudal vena cava or azygous vein
- Multiple ways to detect

Contrast medium portography
Extrahepatic portosystemic shunt

Pros and Cons
- Good visualization
- Hepatic vasculature
- Invasive
 - Surgical approach
- Contrast medium
 - Complications
- Time
 - Hypothermia
 - Catheter removal

Nuclear medicine
- Gold standard
- Administer radioisotope per rectum
 - 99m technetium pertechnetate
- Enters colic vein to portal vein
- Yes or no, but no anatomic data
 - Surgeons cannot use as a guide
Normal scintigram

Portosystemic shunt

Nothings perfect

- Microvasculature dysplasia
 - No gross vessel problem
 - Defect is at the capillary level
- Looks like normal scintigram
Ultrasound

- Can be 95 – 100 % accurate
 - Is operator dependant
- Patients usually quite small
- Patients usually do not like process

Normal ultrasound appearance
Intrahepatic portosystemic shunt

Other findings

Computed tomography

• Still requires contrast medium
 – Usually debilitated patients
• Less time with helical scanners
• Can do 3D reconstruction
MRI

- No contrast needed
 - Can do a “Time of Flight”
 - Allows blood to be its own contrast!
- Moderate amount of time
 - Depends on magnet

MRI splenocaval shunt

Gall Bladder

- Look for stones or mineral
 - Can see with radiography or ultrasound
- Difficult to tell if important
 - Ultrasound can help
 - Especially with cholecystitis
Intrahepatic cholelithasis

Cholecystitis

- Generally radiographs not helpful
- Ultrasound helps more
The spleen

- Generally surrounded by fat
- Very clear on radiography
- Sedation can increase spleen size

Dog spleen

Cat spleen
Spleen

- Not many things happen to spleen
- Separate into diffuse and focal disease
- Radiographs give an idea
 - Ultrasound more helpful for seeing small lesions within parenchyma

Diffuse spleen enlargement

- Neoplasia
 - Lymphoma
 - Mast cell disease
- Congestion
 - Sedation
 - Right heart failure
- Splenic torsion
- IMHA
- Inflammation
- Infarction
- Nodular hyperplasia
- Extramedullary hematopoiesis

Splenic torsion
Splenic torsion

Splenic lymphoma

Splenic lymphoma
Solitary splenic mass

- Neoplasia
 - Hemangiosarcoma
 - Hemangioma
- Nodular hyperplasia
- Hematoma
- Abscess

Splenic mass

Splenic mass
Conclusion

- Liver is cranial to the stomach
 - Spleen is just caudal
- Radiographs outline organ
- Cross sectional modalities
 - Ultrasound, CT and MRI
- Nuclear medicine
 - Portosystemic shunts